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Abstract 

The paper presents an application of the ordinary kriging method to predict multiparameter transfer function 
values in selected points in a transducer. This method allowed to soften the severity of measuring regime during
determination of the transducer transfer function. 
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1. Introduction  
 

An approximation method for transducer multiparameter transfer function is widely 
addressed in literature [15, 16, 17]. Unfortunately the transducers’ transfer function  
measurements with the use of this method are to meet severe measuring conditions, i.e. whilst 
measuring the relation between one of the input variables and the output, all other parameters 
influencing the output must remain stable. This requirement can be very difficult to meet. The 
best example of it is a flow meter transducer, as during measurements of its input vs. output 
signal dependence on the drop of pressure, the temperature and absolute pressure values have 
to be maintained at stable level. That is why it is necessary to develop mathematical methods 
allowing to soften these measuring conditions. The kriging method seems to be promising, as  
basing on values measured in points from a certain range, it allows to predict the values in 
other points from this range. 

Kriging is a statistical method of estimating local variables if they are autocorrelative by 
nature. Such an autocorrelative structure can be expressed by semivariance of measured data. 
The method was named after D.G. Krige, an engineer working for the South African mining 
industry who first applied this method to estimate mineral reserves. Mathematically this 
method was explicated by the French mathematician G. Matheron [18]. The issue has been 
widely addressed in literature [1, 2-5, 12, 13, 14]. The method found its way to practicability 
in geostatic, hydrology, cartography and in many other domains [6-9, 14] and lately in  image 
processing as it enables data inter- and extrapolation basing on a set of dispersed samples. 
Presently, there are three types of kriging distinguished: ordinary kriging, universal kriging 
and co-kriging. 

In ordinary kriging the values in non-sampled points are estimated as the weighted mean of 
data obtained in sampled points and weights are determined from semivariance (Fig. 1.1). 

The Fig.1 shows exemplary positions of measuring z(x1 ,y1) ... z(xn, yn) data points in 
three-dimensional space. The ordinary kriging method allows to estimate the zp value in point 
xp, yp basing on known z1, ... zn values in points x1, y1, ... xn, yn and the geometrical distance 
from data points to the xp, yp point. The kriging mathematical basis was elaborated for three-
dimensional space, because of its primary practical application. However the method can be 



easily adopted to any multidimensional space. The algorithm does not change, only the 
number of computing steps increases. 
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Fig. 1.1. Positions z(xi, yi) of the measurement points and the predicted point z(xp, yp): 

 a) x,y plane view; b) z,x, plane view. 
  
Regardless of the kriging method used, the first computing step is to find a semivariance 

function, the one which expresses the degree of dependence between samples. After it is 
established, multipoint computing of to-be-predicted values can be carried out. When only 
one point is to be predicted the semivariance can be computed only for this point.  

While estimating a transducer model it is assumed that it can be expressed mathematically, 
therefore the transfer function points are correlated. This correlation is to be found with 
semivariance. 
 
2. Semivariance 

 
Semivariance expresses the rate of dependence between particular points in a limited 

space. It is a measure of the spatial dependence between samples and expresses the behavior 
of a given variable in space or time.  

To determine the semivariance function one should know the first two moments of statistic 
random functions ascribed to given phenomenon: 
− the first moment (of averaging): 
  E[Z(x)] = m(x), (2.1) 
 

− the second one (of variance, covariance, semivariance ): 
 
 var{Z(x)} = E{[Z(x) – m(x)]2}. (2.2) 
 

If random variables Z(x1) Z(x2) have variance, they also have covariance, which is a 
function of position of x1, x2:  

 
cov(x1, x2) = E{[Z(x1) – m(x1)] · [Z(x2) – m(x2)]} = E{Z(x1) · Z(x2)} – [m(x1) · m(x2)]. (2.3) 

 
If Z(.) is a stochastic process and is a function of spatial coordinate x, then semivariance is 

defined as: 
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When the process Z(.) is intrinsically stationary, the semivariance may be defined as: 
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The experimental semivariance can be estimated for the N(h) paired observations, Z(x), 
Z(x+h), [18]:  
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where: 
–    Z(xi)   – sample value in point i, 
–    Z(xi+h) – sample value in distance h,  
–    Ph –  number of sample pairs. 

For models of transducers it can be assumed that Z(x) meets the requirements for a  
quadratic stationary state i.e. that the model is stationary and does not change its properties if 
the initial point in time or space is changed and what is more for every pair of {Z(xi), 
Z(xi+h)} random variables there exists a covariance which depends only on the vector 
distance h. 

For every value of vector h the difference {Z(xi) – Z(xi+h)} has a finite variance and is x-
independent. When the vector h value equals zero, the semivariance value is also zero. The 
semivariance is symmetrical with regard to h.  

The value of semivariances between points depends on the distance between them. A small 
distance gives a small value and longer distance implies a greater value of semivariance. The 
graph of semivariance dependence on the distance h between points is called a 
semivariogram. The empirically obtained semivariograms are matched, as needed, with an 
adequate mathematical model: 

linear: 
 γ(h) = c0 + a·h, (2.7) 

spatial: 
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exponential: 
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Gaussian: 
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where: 
− c0 – initial value, 
− c  – range of semivariance (sill), 
− k  – slope of line, 
− a  – range of influence,  
− h  – magnitude of sampling interval. 

Three characteristic parameters can be distinguished in a semivariograph: initial value c0, 
for historical reasons called “a nugget”, sill value and range of influence. The value c0 
expresses the variability of the examined quantity at a scale less than the interval of sampling 
or can be originated due too low accuracy of measurement. The empirical semivariance for 
distance h=0 equals 0, as the point is compared with itself. The value after which the variance 
function does not increase anymore (approximately equal to the variance of sample) is called 



the sill value, and the distance from zero to the point at which the variance function attains 
95% of its constant value is called the range of influence. This is also the longest distance at 
which the samples are correlated. 

Depending on a particular need, the semivariance can be approximated with different 
functions or their modifications. In more complicated cases it would be a multinomial 
function or a spline. 

 
3. Ordinary kriging 
 

 Ordinary kriging is the simplest way of predicting values in selected points. Assuming that 
the values of local variables are stationary, the values of dimensionless points are estimated 
basing on other dimensionless points. 

Values are estimated using a linear function: 
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where:  
− N  – number of  measurement points, 
− ωI – weights, 
− Z(xi) – measured values in points xi. 

The ωI weights are called the kriging coefficients. Their values depend on sampling point 
positions and the position of the point whose value is to be estimated. The weights ascribed to 
samples should be selected to minimize the quadratic mean’s error. This error is called the 
kriging variance σk

2
  and is calculated for every sampling range and every configuration of  

the estimated range. The basic problem with estimator function (3.1) is to find the weights ω. 
These weights are determined from a system of equations, after taking into account the 
unbiased value of the estimator: 
 0)}Z(x)(xẐE{ pp =−  (3.2) 
 
and the condition of variance minimum: 
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From expressions (3.1) and (3.2), and applying normal distribution of sampled points we 
get: 

 
n N

p p i i p i
i 1 i 1

ˆE{Z(x ) Z(x )} ω E{Z(x )} E{Z(x )} m ω m 0,
= =

− = − = − =∑ ∑        (3.4) 

where m is an expected value. 
For:  
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expression (3.3) equals zero and (3.3) can expressed as follows: 
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Expression  (3.4) can be transformed by adding and subtracting the expected value m, 
which does not change the expression if (3.5) is met. After raising to the second power and 
transformation we get: 
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The three expected values in expression (3.7) determine appropriate values of covariance 

and variance: 
{ }m))m)(Z(x)(Z(xE ji −−  – covariance between two measuring samples, 

 { }m))m)(Z(x)(Z(xE pi −−  – covariance between  measuring sample and estimated value, 
{ }m))(Z(xE p −  – variance in estimated point. 

Taking into account expressions (3.2-3.5) the (3.7) can be expressed regarding covariance 
and variance functions: 
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In the next step, regarding expressions (2.5-2.8), covariance and variance functions 

expressed in distance h between particular points can be substituted to (3.8) giving: 
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where:  
− hi,j – distance between points xi and xj, 
− hi,p – distance between points xi and xp. 

Successively, using (2.9),  (3.9) can be expressed like: 
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The calculation of weights ω is carried out by establishing a minimum value of σ2variance. 
It can be achieved by using the Lagrange technique, which incorporates an additional 
coefficient µ called the Lagrange multiplier. That gives: 
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Basing on the above, N partial differentials are generated and equated to zero: 
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After differentiation and ordering we get: 
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After simplifying and rearranging of (3.13) and taking into account expression (2.5) we get 
N+1 equations with N+1 unknowns: 
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which allows to compute weight coefficients ω and to determine the estimating function 

(3.1) at the same time as well as the value of variance: 
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The expanded first term in (3.14) will look as follows: 
 

 ω1γ(h11) + ω2γ(h12) + ... + ωΝγ(h1N) +µ = γ(h1p) 
 ω1γ(h21) + ω2γ(h22) + ... + ωΝγ(h2N) + µ = γ(h2p) (3.16) 
 ω1γ(hN1) + ω2γ(hN2) + ... + ωNγ(hNN)+ µ = γ(hNp), 
 

where: 
− hij  – distance between points xi and xj, 
− hip – distance between points xi and xp, 

where the distances are established in a geometrical sense: 
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In matrix notation we get: 
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One should notice that the semivariance coefficients, which are positioned symmetrically 

to the main matrix diagonal have the same values, as they concern the same distances between 
the same points and the values at the main diagonal equal zero, as they refer to a single point. 
The zeroed values at the main diagonal can cause problems when the matrix is inversed. What 
is more, from the (3.16) system of equations it is clear that when the value of a new point is to 
be calculated its semivariance γ(hi,) has already been computed. However the 
semivariance γ(hi,p) and the new values of weight coefficients are to be found. If the number 
of to-be-found points is significant, the number of calculations is also enormous. In matrix 
calculus the solution of the (3.18) system of equations is as follows: 
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where: 
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where: 
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Taking into account (3.15) and (3.16)  the variance in predicting point xp can be expressed 

by: 
  σ2(xp) = γp

T ωp. (3.22) 
 

An additional element inserted to those calculations is the input data standardization.  It 
causes that the numerical range of values used in calculations is diminished which reduces the 
miscount errors. The input data standardization is carried out by calculating the mean value m 
and variance s for all coordinated measuring points and for values of samples in these points 
and then all the values are recalculated using the following formula: 
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where:  
− wi – values of the given input data, 
− m – mean value of input data, 
–    σ – variance. 

The standardization procedure changes the range of independent variables to -2÷2, and 
values in particular points are contained in the range of 0÷1. What is more, the mean value of 
such recalculated input data equals 0 and the variance is 1. When calculations are finished,  
de-standardization is to be performed. 

 
4. Transfer function approximation  
 

In our case the ordinary kriging method described above was applied to scale the volume 
flow meter transducer described in [16, 17]. The physical complexity of flow problems makes 
it difficult to approach these processes from a mathematical standpoint. Hence, a large role is 
played by experimental research and mathematical modeling of flows [19, 20]. 

The magnitude of gas flow is calculated from the drop of gas pressure dP at the outlet of 
the orifice, with regard to gas temperature T and absolute pressure P. The temperature ranged 
from 263.15 K to 333.15 K (-10 ÷ +40 °C), absolute pressure from 100 kPa to 120 kPa and 
pressure drop at orifice was in the range of 0-250 Pa . The readings of measuring points are 
presented in Table 4.1.  

 
 
 
 
 



Table 4.1. Sampled values for the transducer transfer function. 

Lp. Q 
[m3/h] 

T 
[K] 

dP 
[Pa] 

P 
[Kpa]

Lp. Q 
[m3/h] 

T 
[K] 

dP 
[Pa] 

P 
[Kpa]

1. 0.2813 277.4161 49.0133 101 11. 0.0607 290.4066 5.3859 102 
2. 0.6647 311.6259 201.7263 115 12. 0.0432 309.5759 3.6714 105 
3. 0.4682 273.3354 117.1179 108 13. 0.4246 280.4239 97.4928 117 
4 0.4398 304.1464 99.7551 106 14. 0.6233 283.7021 190.1696 120 
5. 0.7338 305.8421 243.3591 118 15. 0.7472 278.9716 266.7299 116 
6 0.2287 307.8978 34.4059 109 16. 0.1039 278.5927 10.8371 104 
7. 0.6058 276.5274 183.5706 112 17. 0.4551 307.9217 105.1335 109 
8. 0.6030 289.1413 177.2278 107 18. 0.3755 296.3382 77.2351 110 
9 0.3044 283.5448 55.3498 113 19. 0.0095 295.1444 0.6906 100 
10. 0.4543 305.1527 105.2518 116 20. 0.2697 278.9482 45.6644 112 

 
Then, basing on the above data and using the ordinary kriging method, the flow values Q 

were calculated for selected (100, 105, 110, 115 and 120 kPa) values of absolute pressure P, 
temperature T (T = 273.15, 283.15, 293.15, 303.15 and 313.15 K ) and differential pressure 
dP as in Table 4.1. 

The first step was to calculate the approximating polynomials of flow Q dependence on 
differential pressure dP, with temperature T and pressure P as parameters: 
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The αi coefficients of this polynomial for pressure P=100 kPa at sequential temperatures T 
are given in Table 4.2 and polynomial diagrams in Fig. 4.1. 

 
Table 4.2. Values of αi coefficients in dependence on temperature, for pressure P=100 kPa. 

No. T [K] α3·107
 α2·104 α1·103

 α0 
1. 273.15 0.3981 -0.223 5.983 0.0279 
2. 283.15 0.4997 -0.228 6.047 0.0262 
3. 293.15 0.4212 -0.225 6.103 0.0251 
4. 303.15 0.4309 -0.228 6.159 0.0242 
5. 313.15 0.4498 -0.230 6.195 0.0231 
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Fig. 4.1. Flow Q dependence on pressure dP with temperature T as parameter. 



Approximation of αi coefficients allowed to determine the  approximating polynomials for 
two variables determining flow Q dependence on pressure dP and temperature T under P as a 
parameter. 
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The β coefficients of approximating polynomials are given in Table 4.3 and polynomial 

diagrams are in Fig.4.2. with pressure P as a parameter. 
 

Table 4.3. The β coefficients of approximating  polynomial (4.2). 

βi,j 0 1 2 
0 7.25·10-2

 2.19·10-4
 2.09·10-7

 

1 1.98·10-3
 2.16·10-5

 2.99·10-8
 

2 5.32·10-6
 -1.83·10-7

 2.57·10-10
 

3 -3.15·10-8
 4.55·10-10

 -5.34·10-13
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Fig. 4.2. Flow Q dependence on temperature T with P as a parameter. 
 

Approximation of β coefficients (4.2) allowed to determine the coefficients of the final 
approximating polynomial: 

 
3 2 2

k j i
i,j,k

i 0 j 0 k 0
Q γ P T dP .

= = =

  
=   

  
∑ ∑ ∑  (4.3) 

 
They are listed in Table 4.4. 

 
Table 4.4. Coefficients of polynomial approximation of flow transducer transfer function. 

γi,j,k 2 1 0 γi,j,k 2 1 0 
0,0 7.21·10-6

 1.21·10-5
 8.06·10-4

 2,0 8.09·10-11
 5.42·10-8

 6.16·10-8 
0,1 3.10·10-9

 1.89·10-6
 1.32·10-5

 2,1 1.12·10-11
 -1.81·10-9

 7.19·10-9 
0,2 -4.38·10-12

 2.03·10-9
 1.39·10-8

 2,2 4.17·10-15
 2.05·10-12 2.18·10-12 

1,0 8.21·10-6
 1.90·10-5

 5.03·10-4
 3,0 2.59·10-13

 -3.74·10-10 1.25·10-9 
1,1 2.76·10-10

 1.98·10-7
 1.25·10-6

 3,1 2.36·10-15
 3.91·10-12 1.72·10-11 

1,2 -1.52·10-13
 2.76·10-10

 1.21·10-9
 3,2 8.07·10-18

 -6.39·10-15 9.19·10-15 
 

In the next step the calculated coefficients of the polynomial were implemented along with 
the polynomial calculation algorithm (4.3) in a microcontroller which calculated the flow 



value basing on sampled data. Comparison of the measurement results with values taken from 
a reference device has shown that the error between the achieved polynomials in relation to 
the maximum flow did not exceed 1,21% in any case. 

The above example shows that the ordinary kriging combined with the method of 
calculation of the polynomial approximating a multiparameter transducer transfer function 
can be an effective and cheap tool to determine transducers’ model parameters. However, it 
was established that the number of input data for kriging is calculated by successive 
approximations. In the example above the calculations were primarily made for ten inputs. As 
the attempt to calculate the semivariance function rendered the result to be unsatisfactory, the 
number of inputs was increased to twenty. This proved to be satisfactory in terms of the 
obtained results. Calculations were also made for sixty inputs but the achieved improvement 
was not significant. It shows that for now there is no independent criterion allowing to 
establish the appropriate input number. It is possible that in more complex transducer transfer 
functions the necessity to either increase the number of samples or to regionalize the function 
i.e. divide the transducer range into sub ranges and approximate separately, will occur. The 
problem of selection of the method of sample points is a separate issue, not addressed in this 
paper. 
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